rB
=
Cd
(2);
Значения Cu и Cd в момент 1, когда закончится срок опциона известны, так как известны характеристики опциона и стоимость обыкновенных акций. Таким образом, имеем два уравнения с двумя неизвестными. Вычитая уравнение AdS+rB=Cd из AuS+rB=Cu, получим решение относительно u:
As (u-d)=Cu-Cd
Преобразуя, получим:
A
=(
Cu
-
Cd
)\
S
(
u
-
d
)
(3);
Величина А называется коэффициентом хеджирования, она определяет, сколько обыкновенных акций нужно купить, чтобы получить такой же денежный доход, как и от покупки одного опциона.
Решаем уравнения 1 и 2 относительно В:
B= (uCd – dCu)\(u-d)*r
(4)
Портфель, состоящий из одного опциона покупателя, в любом случае принесёт такой же доход, что и портфель из В облигаций и А обыкновенных акций. Поэтому в состоянии равновесия первоначальная стоимость обоих портфелей должна быть одинаковой. Для этого должно выполняться равенство:
C
=
AS
+
B
(5).
Стоимость опциона покупателя С должна быть равна AS+B, иначе есть возможность получить на операциях с опционом спекулятивную прибыль.
Для того, чтобы рассчитать стоимость опциона покупателя не было необходимости знать вероятности исходов u и d. Вероятности могут повлиять на стоимость опциона покупателя, но только косвенно. Если вероятность u велика, цена акции S, несомненно, выросла бы, и из уравнения (5) можно увидеть, что рост S увеличивает стоимость опциона С. Модель не показывает, как оценивать акции. Она показывает, как оценивать опционы покупателя, зная цену акции. Другими словами, цена опциона покупателя зависит от цены акции.
Кроме того, модель не требует, чтобы инвесторы договаривались о вероятности исхода u. Оптимистично настроенные по отношению к u инвесторы, возможно захотят обладать большим количеством акций (или опционов покупателя). Но при заданной цене акции, они придут к соглашению относительно цены опциона. Покажем, как только что описанная модель используется для формирования хеджированного портфеля и определения стоимости опциона покупателя при заданных условиях.
Пример.
S = 100 $; u = 1,5; d = 1,0; K = 120 $; rf = 0,10; r =1,10;
Cu = max (uS – K, 0) = max (150 $. – 120 $, 0) = 30 $;
Cd = max (dS – K, 0) = max (100 $ – 120 $, 0) = max (-20 $) = 0.
Срок опциона закончится через один период. Сейчас цена акций равна 100 $, а через один период цена будет или 150 $, или 100 $
uS = 1,5* 100 долл. = 150 $;
dS = 1,0*100 долл. = 100 $;
Если цена исполнения опциона 120 $, то стоимость опциона в конце периода будет либо 30 $(при цене акций 150 $), либо 0 (при цене акций 100 $). Чтобы найти А и В, воспользуемся уравнениями (3) и (4):
Так как (u-d) = 0.5 и Cu – Cd = 30 $, то
A = (Cu – Cd)\(u – d)*S = 30 $ /0.5*100 $;
B= (uCd – dCu)\(u-d)*r = (-1)*30 $/0.5 (1.1) = (-60)$/1.1 = (-54.55)$;
Отрицательное значение B показывает, что следует использовать заёмный капитал. На каждый опцион следует купить 0.6 обыкновенных акций на сумму 0.6*100 $ = 60 $ и взять заём 60 $/(1.1) = 54.55 $(в период 1 в счёт погашения долга будет уплачено 60 $).
Если произойдёт событие u, то стоимость портфеля будет:
Обыкновенные акции |
Облигации: rB |
Итого |
100 долл.*0.6 = 60 $ |
-60 $ |
0 $ |
Сатьи по теме:
Проблемы развития ипотечного кредитования в России
До определенного момента развитие ипотечных операций сдерживалось неблагоприятными макроэкономическими условиями: высокими темпами инфляции, нестабильностью курса рубля, низким уровнем доходов населения. В последние три года ситуация изменилась: объемы предоставленных кредитов активно растут, число ...
Основные направления совершенствования российской банковской системы
Как уже отмечалось, сегодня в экономической жизни России происходят непростые явления, обусловленные мировым финансовым кризисом. Глобальная финансовая система претерпевает принципиальные изменения. В условиях таких изменений и качественно новых рисков простых рецептов и решений уже не существует. ...
ЦБ Российской Империи
Государственный банк Российской империи был основан «для оживления промышленности в торговли» и открыл свои действия 31 мая 1860 года в соответствии с указом Александра II на основе реорганизации Государственного коммерческого банка. 3 января 1862 года был утверждён Устав контор Государственного ба ...